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This paper presents a novel adaptive subdomain model order reduction (MOR) based on proper orthogonal decomposition (POD) 

and discrete empirical interpolation (DEI) methods for nonlinear magneto-quasi-static (MQS) problems. In this method, the nonlinear 

region is subdivided into two regions where one of region includes all those finite elements which have particularly strong saturation in 

the nonlinear material and the other region does not. MOR based on POD and DEI methods is applied only to the latter region. Both 

regions are determined from the previous solution automatically because the finite elements which have the strong nonlinearity in the 

ferromagnetic material may change at each time step. It is shown that this method can effectively reduce the computational time to 

solve the nonlinear MQS problems without losing quality of accuracy in comparison with the accuracy of the non-reduced finite 

element method. 

 
Index Terms— Finite element analysis, principal component analysis, reduced order systems.  

 

I. INTRODUCTION 

ODEL ORDER REDUCTION (MOR) has been applied to a 

variety of discrete electromagnetic field problems, for 

example for the transient analysis for electro- and magneto-

quasi-static (EQS and MQS) problems [1]-[5]. Although we 

can apply MOR based on proper orthogonal decomposition 

(POD) to nonlinear problems, this method may not be 

remarkably effective for analyzing the nonlinear problems 

[1][2]. There are two problems in POD-based MOR: one is a 

deterioration of the accuracy in saturated regions and another 

is an increase of computational cost in iterative processes in 

which a nonlinear term has to be updated and matrix-matrix 

products have to be calculated at each time step. 

To tackle the deterioration of the accuracy, one of the 

authors has proposed Subdomain MOR [3] in which the whole 

region is subdivided into linear and nonlinear regions. Then 

MOR is applied only to the linear region. This approach helps 

to maintain the accuracy in the saturated region compared to 

the non-reduced model. However, this method cannot 

dramatically reduce the computational time because the 

number of degrees of freedom (DoF) is much larger than that 

of the usual approach where a MOR is applied to the whole 

computational domain. 

On the other hand, MOR based on discrete empirical 

interpolation (DEI) method [4][5] has been proposed to reduce 

the computational cost in the iterative processes. In this 

method, the nonlinear term is interpolated in the localized 

nonlinear regions which are determined by evaluating 

nonlinear terms obtained during a preconditioning process. 

In this paper, we propose a novel POD-based MOR method 

combining Subdomain MOR and DEI methods in which a 

nonlinear region is subdivided into two regions. One has finite 

elements which exhibit a particularly strong nonlinear 

behavior in the ferromagnetic material while the other does 

not have them. POD-based MOR is applied only to the latter 

region. These regions should be determined automatically 

because the electromagnetic distributions in the nonlinear 

ferromagnetic material change at each time step and it is 

initially not known where the elements which exhibit strong 

nonlinearity due to ferromagnetic saturation effects are 

positioned before analyzing the electromagnetic distributions. 

Therefore, these regions are automatically determined from 

the previous solutions and the snapshot electromagnetic 

distributions. Moreover, then the DEI method is applied to the 

nonlinear term in the latter region to reduce the computational 

time in the iterative processes. 

In this work, we apply the present method to two models for 

MQS problems and compare the present method to usual 

MOR, DEI-based MOR and Subdomain MOR with respect to 

the accuracy and the computational time. 

II. FORMULATION 

Let us consider a nonlinear equation for MQS problems of n 

dimension, 
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where the first and second terms are linear terms, the third 

term is a nonlinear term, xsubR
(n-p-q)

, xMOR(x) R
p
, xlinearR

q
, 

p and q are the number of DoFs in the domains to which MOR 

is applied in nonlinear and linear domains, respectively. 

Applying the singular value decomposition to 

XMOR=[xMOR(t1),…, xMOR(ts)] and  Xlinear=[xlinear(t1),…, 

xlinear(ts)], we can obtain transformation matrices WMOR and 

Wlinear. The vectors xMOR and xlinear can be expressed by linear 

combination of the transformation matrices WMOR and Wlinear  
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where I is an unit matrix, s is the number of snapshots and 

yR
p+s+s

. Moreover, we can apply DEI method to fMOR(x) to 

reduce the computational time in the iterative processes, i.e. 

)(PU)U(P)(' MOR
-1

MOR xfxf
tt   (3) 

 
where U and P are found in [4]. Finally, we can obtain the 

reduced equation for (1) 
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We employ the finite element method and Newton Raphson 

method to solve (4) for the nonlinear MQS problems. 

III. ADAPTIVE SUBDOMAIN MOR 

In the preconditioning process in which we snapshot the 

electromagnetic field until time step s, the nonlinear region is 

automatically subdivided into two regions by using the norm 

of the magnetic density and we construct the transformation 

matrices W and WDEI at each time step. At n time step, the 

electromagnetic distribution which does not significant change 

from n-1 time step is detected from the magnetic distributions 

obtained in the preconditioning process. The transformation 

matrices corresponding to this detection are chosen from the 

trans-formation matrices constructed in the preconditioning 

process. 

IV. RESULTS 

To test the validity of the present method, we apply usual 

MOR, DEI-based MOR, subdomain MOR and the present 

method to two models for the MQS problems shown in Fig. 1 

which are connected to the simple circuit shown in Fig. 2 

where v and R are 0.008V and 10
-5

. The driving frequency is 

100Hz and t is 2.5×10
-4

 seconds. The initial states are 

assumed to be zero fields. The number of snapshots is set to 

s=20 and 50 in model 1 and 2, respectively. To compare the 

present method to the other methods, the error is defined by 
 















t

e

e

N

n
N

k

nk

N

k

nknk

tN
1

1

2

,

1

2
MOR
,,

1
Error

B

BB

 (6) 

 
where Nt, Ne, Bk,n and Bk,n

MOR
 are the total time steps, the 

number of elements, the magnetic density for k-th element at n 

time step obtained by FEM and each MOR method. The 

computational time does not include the preconditioning 

process in which we snapshot the electromagnetic fields and 

construct transformation matrix and so on. 

 The results of the errors and computational times are shown 

in TABLE I and II. The DEI-based MOR performs best and 

worst with respect to the computational time and the error, 

respectively, while the Subdomain MOR behaves just the 

opposite in both models. These methods have trade-off 

property between the error and the computational time. In 

model 2, the computational times of the MOR and Subdomain 

MOR are more than 100% of the standard FEM simulation. 

Here, in the case of nonlinear MQS problems, these methods 

have to calculate the matrix-matrix products at each time step 

whose computational cost increases with number of snapshots. 

We can see in TABLE I and II that the errors of the present 

method are almost the same as those of subdomain MOR 

while the computational times of the present method are less 

than 30% in both models. Thus, the presented method can 

improve accuracy and computational time, simultaneously. 

The full paper will give details on the automatic subdivision 

of the nonlinear region and the effectiveness of this method. 

This work was supported in part by JSPS KAKENHI Grant 

Number 25630101, as well as JSPS and CAPES under the 

Japan-Brazil Research Cooperative Program. 
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(a) Model 1 

 
(b) Model 2 

Fig. 1 Numerical model 

 
Fig. 2 Circuit including FE model 

TABLE I  

COMPUTATIONAL COST OBTAINED BY EACH MOR METHOD. 

 MOR SubMOR MOR_DEI Present 

Model1 23.2% 40.9% 8.90% 13.7% 

Model2 145% 118% 8.14% 27.7% 

 

TABLE II  
ERROR OBTAINED BY EACH MOR METHOD. 

 MOR SubMOR MOR_DEI Present 

Model1 3.63% 0.289% 3.82% 0.474% 

Model2 3.45% 0.749% 5.47% 0.982% 
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